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Stochastic processes with finite correlation time: Modeling and application to the generalized
Langevin equation

T. Srokowski
Institute of Nuclear Physics, PL–31-342 Krako´w, Poland
~Received 9 January 2001; published 14 August 2001!

The kangaroo process~KP! is characterized by various forms of covariance and can serve as a useful model
of random noises. We discuss properties of that process for the exponential, stretched exponential, and alge-
braic~power-law! covariances. Then we apply the KP as a model of noise in the generalized Langevin equation
and simulate solutions by a Monte Carlo method. Some results appear to be incompatible with requirements of
the fluctuation-dissipation theorem because probability distributions change when the process is inserted into
the equation. We demonstrate how one can construct a model of noise free of that difficulty. This form of the
KP is especially suitable for physical applications.
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I. INTRODUCTION

It is frequently assumed that a noise in stochastic eq
tions is not correlated and the underlying stochastic proc
can be regarded as Markovian. This assumption is justi
only if the time scales involved are large compared to
noise correlation time. On the other hand, the noise itself
result from a procedure of fast modes removal. It is w
known @1,2# that in such cases noise correlations, both
space and time, must arise. For some stochastic proce
the noise covariance decays fast with time and it can be
in an exponential form~the colored noise@3#!. Frequently
even longer tails of the noise covariance are observed. A
braic covariances appear in the fluid dynamics@4–6# and
linearized hydrodynamics@7#; they are responsible for suc
phenomena as noise-induced Stark broadening@8# and
anomalous nuclear scattering in the framework of the m
lecular dynamics@9#. A direct consequence of the algebra
form of the velocity autocorrelation function, falling no
faster then 1/t, is the infinite value of the diffusion coefficien
@10#. An anomalous diffusion process is frequently observ
in disordered media where a trapping mechanism lead
algebraic distributions of waiting time. For example, som
amorphous insulating materials~e.g., As2Se3) exhibit a
highly dispersive transient photocurrent@11#, just due to
charge hopping between spatially disordered sites.

Stochastic dynamics driven by a noise different from
white noise obeys the generalized Langevin equation~GLE!
@12,13#:

m
dv~ t !

dt
52mE

0

t

K~ t2t!v~t!dt1F~ t !, ~1!

whereF(t) is a stochastic force andm denotes the mass o
the Brownian particle. Due to the second fluctuatio
dissipation theorem~FDT! @14,15#, the kernelK(t) can be
expressed in terms of the noise covarianceCF
[^F(0)F(t)&: K(t)5CF /mT, with the temperatureT. The
Eq. ~1! can be handled as a usual Volterra equation@16#.
Assuming the initial conditionv(0)50, the general solution
can be expressed in the form of a stochastic integral@17#:
1063-651X/2001/64~3!/031102~9!/$20.00 64 0311
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v~ t !5m21E
0

t

R~ t2t!F~t!dt, ~2!

where the Laplace transform of the resolventR(t) is given
by the equation

R̃~s!51/ @s1K̃~s!#. ~3!

From Eq. ~2!, expressions for some average quantities f
low. For the velocity variance, we have

^v2&S~ t !5m22E
0

tE
0

t

R~ t2t!R~ t2t8!CF~ ut2t8u!dtdt8,

~4!

where the averagê&S is taken over an equilibrium ensemb
with some stationary probability distribution. The FDT e
sures that asymptotically, for large time, the system reac
the equilibrium valuê v2&S5T/m ~the equipartition energy
rule!. For the velocity autocorrelation function, in turn, w
have simply

Cv~ t ![^v~0!v~ t !&S5~T/m!R~ t !. ~5!

The assumption about a form of noise covariance is s
ficient to calculate some average quantities. In order to sim
late stochastic trajectories from Eq.~2!, one needs a concret
physical process that could serve as a model of the noise
example, for the exponential covariance, it could be the w
known Ornstein-Uhlenbeck process, which, due to the Do
theorem@18#, is very important if amplitude distributions ar
Gaussian. A broad class of stochastic processes know
‘‘kangaroo processes’’~KP! @19# is especially interesting
One can construct the KP for an arbitrary, given form
covariance. The KP is particularly well suited for problem
involving algebraic, scale-invariant dependences. Long t
of constant value of the process in the step-wise structur
the KP make possible to preserve the memory about
value for a sufficiently long time to produce such slow
decaying form of the covariance. Due to that structu
the KP resembles stochastic, dispersive transport proce
in disordered media, e.g., the hopping time distributi
©2001 The American Physical Society02-1
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@20–22#. In the framework of random walk processes, a p
tern of long straight-line segments is typical for Le´vy flights
@23–25#.

This paper deals with random noises possessing var
covariances: exponential, stretched exponential and a
braic, and expresses them in terms of the KP. The most
portant properties of KP are summarized in Sec. II; we a
derive there formulas referring to those forms of the cova
ance. In Sec. III, we consider the application of the KP a
model of random force in the GLE. The most important
sults are summarized and discussed in Sec. IV.

II. THE KANGAROO PROCESS

The kangaroo process@19# is a stepwise, discontinue
random function. The value of the processm(t) is deter-
mined at subsequent random jumping timest1 , t2 , . . . . The
jumping frequencyn(m) depends on the value of the proce
itself andm remains constant between jumps. We introdu
also the interval length as a reciprocal of the frequen
s51/n. Due to some physical applications, this quantity c
also be called ‘‘a free path.’’ The KP is a stationary Mark
process and can be defined by the probability densityp(m,t)
satisfying the following Fokker-Planck equation

]

]t
p~m,t !5n~m!S 2p~m,t !1

PKP~m!

*n~m8!PKP~m8!dm8

3E n~m8!p~m8,t !dm8D , ~6!

wherePKP(m) denotes a stationary probability distributio
of m(t). The interval lengths is also a stochastic quantity. It
probability distributionP(s) is connected withPKP(m) by
the relation P(s)ds52PKP(umu)dumu. We assume tha
PKP(m) andn(m) are even functions ofm. This assumption
allows us to get a simple expression for the covariance of
C(t)5^m(t)m(0)&S where the average is taken over the s
tionary probability distributionPKP(m):

C~ t !5E
2`

1`

m2PKP~m!exp@2n~m!utu#dm. ~7!

We want to derive an expression forn(m) for a given cova-
riance C(t) and an amplitude distributionPKP(m). Let us
assume thatn(m) is a monotonic increasing function ofumu
andn(`)5`. Then we can change the integration variab
in Eq. ~7! and obtain the Laplace integral

C~ t !52E
n(0)

1`

m2PKP~m!
dm

dn
exp~2nutu!dn. ~8!

Therefore,n(m) is a solution of the following differentia
equation

dn

dm
52m2PKP~m!/C̃~n!, ~9!

whereC̃(n) denotes the inverted Laplace transform ofC(t).
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Solution of the Eq.~9! allows us, in principle, to generat
a stochastic time series of the process with a given, q
arbitrary covariance and with an arbitrary distributio
PKP(m).

A. Exponential covariance

The KP for the exponential covariance

C~ t !5n0 exp~2n0t !, ~10!

where n05const is a reciprocal of the correlation time,
called the Kubo-Anderson process@26#. The jumping times
are uniformly distributed in the interval (2`,`) with a
m-independent densityn0, according to the Poissonian dis
tribution. Therefore, the intervals of constantm are distrib-
uted exponentially:P(s)5n0 exp(2n0s). The value of the
processm(t) may be chosen according to an arbitrary dist
butionPKP(m). In that sense, the distributions ofm ands are
independent of each other. That property holds only for
Kubo-Anderson process; for a general KPm ands are inter-
dependent. The Fokker-Planck equation~6! takes a simpler
form for the Kubo-Anderson process

]

]t
p~m,t !5n0S 2p~m,t !1PKP~m!E p~m8,t !dm8 D .

~11!

Some forms ofPKP(m) are distinguished. The simples
choice isPKP(m);d(m2n0)1d(m1n0) and corresponds
to the dichotomous noise~the random telegraph proces!
@27#. Due to the central limit theorem, the Gaussian distrib
tion of PKP(m) is of special importance. The Kubo
Anderson process with that distribution resembles
Ornstein-Uhlenbeck process. However, both processes
not identical @28#; the Fokker-Planck equation for th
Ornstein-Uhlenbeck process, (])/(]t)p(m,t)5n0(])/
(]m)(m1Dn0(])/(]m))p(m,t), differs from the Eq.~11!.

B. Stretched exponential covariance

The exponential distribution of interval lengthsP(s), a
distinctive feature of the Kubo-Anderson process, can a
characterize stochastic processes with the covariance
other than exponential. Let us consider the covariance p
sessing the shape known as the ‘‘stretched exponential.’’ T
function is the following:

C~ t !5exp~2atg!, ~12!

wherea5const and 0,g,1. In the present study, we as
sumeg51/2. The stretched exponential function describ
relaxation phenomena in random systems@29,30# and can be
attributed to a dispersive transport of mobile defects in
glass@31#. The dispersive transport is characterized by
infinite average time between subsequent hops. Moreo
the velocity autocorrelation function of a particle inside t
Sinai billiard with the finite horizon is also given by the E
~12! @32#.
2-2
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We want to find expressions, useful in practical applic
tions, allowing us to generate time series possessing the
quired covariance. The inverted Laplace transform of
~12! reads

C̃~n!5
1

2

a

Ap
n23/2exp@2a2/~4n!#. ~13!

In order to simplify the differential equation~9!, we take the
amplitude distribution in the form

PKP~m!5
2

p
umu25 exp~2p21m24!, ~14!

where mP(2`,`). The distribution possesses maxima
m5mmax56@4/(5p)#1/4 and it is very small nearm50.
Inserting Eqs.~13! and ~14! into Eq. ~9!, we get the differ-
ential equation forn(m) in the form

dn

dm
58/~Apa!m23n3/2expF2

a2

4
$n2124/~a2pm4!%G .

~15!

One can easily check that Eq.~15! is satisfied by the function

n~m!51/s5~pa2/4!m4 ~16!

and the interval lengths distribution is indeed exponentia

P~s!5
a2

4
expS 2

a2

4
sD . ~17!

The direct relation betweens and m follows from the Eq.
~16!. From that equation, we conclude thatsP(0,̀ ) and
long intervals correspond to the values ofm close to zero;
such events are extremely rare. Technically, a time se
m(t) can be constructed by sampling subsequent intervas
from the distributionP(s). Then corresponding process va
ues are evaluated by means of Eq.~16!, taking into account,
in addition, that both signs ofm are equally probable.

C. Algebraic covariance

Let us now consider the KP possessing the power-
covariance that we express in the following form:

C~ t !5G~g!t2g ~g.0!. ~18!

The jumping frequencyn(m) one can derive from Eq.~9!,
similarly as for the stretched exponential case

n~m!5F2gE
0

umu
m82PKP~m8!dm8G1/g

. ~19!

We assume the amplitude distribution in the algebraic fo
PKP(m);m2a (a5const), modified in order to satisfy th
normalization condition 2*0

`PKP(m)dm51. Generally, two
different forms ofPKP(m) are possible.
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In the first case, we cut off the large values ofumu

PKP~m!5H 12a

2a
~ umu/a!2a umu<a

0 umu.a,

~20!

wherea5const is an additional parameter. Due to the co
dition n(`)5`, a must be a large number; finiteness ofa
results in a deviation of the covariance from the assum
form ~18! neart50 and in removal of the singularity. More
over, the normalization condition impliesa,1. Inserting
PKP(m) into the Eq.~19! gives us the expression for th
relation betweenm ands,

s5
1

n
5~ga8!21/ga(12a)/gumu2(32a)/gu~s2e!, ~21!

where we have introduced a constanta85(12a)/(32a).
Finiteness of the parametera imposes a restriction on th
lower bound of the interval lengthe: sP(e,`). The smallest
interval length e is related to that parameter by:e
5(a8g)21/ga22/g. The probability distribution of interval
lengths takes the algebraic form

P~s!5~ga8!12a8a22a8s2ga821. ~22!

From Eq.~22!, some restrictions on possible asymptotic b
havior of P(s) follow. The slowest decay rate for larges
occurs fora close to 1:P(s);s21. On the other hand, the
distribution P(s) falls the most rapidly, as;s2g21, for
a→2`.

The other possibility is to cut off the distributionPKP(m)
nearm50:

PKP~m!5H 0 umu,a

a21

2a
~ umu/a!2a umu>a,

~23!

wherea.1. One can show that the minimal interval leng
is finite ~nonzero! if a.3. The interval lengths distribution
can be obtained similarly as for the case~20!. The result is
slightly more complicated:

P~s!5S 32a

g~a21!
a12as2g1a32aD 22/(32a)

s2g21.

~24!

Asymptotically, the distribution approachess2g21, indepen-
dently of a.

III. APPLICATION TO THE GLE

We will now consider Eq.~1! for which the random force
F(t) is modeled by means of a concrete stochastic proc
possessing a given covariance, and simulate stochastic
jectories of the Brownian particle by means of a Monte Ca
method. Therefore, two equations are to be solved simu
2-3
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T. SROKOWSKI PHYSICAL REVIEW E 64 031102
neously: the original GLE and the second one, describing
adjoined process, in the form of some KP. Accordingly,
the following, we assumeF(t)5m(t). A similar approach
used to be applied@33,34# to deal with stochastic equation
driven by the colored noise; the adjoined process constit
in that case the Ornstein-Uhlenbeck process. Independe
of those methods, which model the noise as a stocha
random process, one can introduce some deterministic
tem possessing a required autocorrelation function.
value of the noise at a given time is then determined by
evolution of dynamical equations of motion. In this wa
Shimizu @35# solved both ordinary Langevin equation an
GLE, representing the noise by a chaotic map. Similarly,
Sinai billiard has been used to model a noise with long-ti
covariance in the Langevin equation@36#. Certainly, the first
two moments do not determine the noise uniquely and
choice of a model involves additional assumptions, es
cially for non-Gaussian and not exponentially correlated p
cesses. The form of the noise must be decided accordin
physical requirements of a concrete application. Nevert
less, some important quantities, like the autocorrelation fu
tion of the Brownian particle velocity~5!, apparently depend
only on the noise covariance.

However, for some stochastic processes description
those quantities provided by the equations collected in
Introduction does not agree with the simulation results. So
ing the GLE to obtain the Brownian particle velocity requir
the value of the noiseF(t), determined by the adjoined pro
cess, at a given time. It has been demonstrated recently@37#
that this requirement modifies probability distributions–t
adjoined process looks differently when inserted into
equation. Consequences of that change for the Monte C
th
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s
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simulation results may be important. In particular, one c
expect a violation of the FDT that manifests itself in an im
proper asymptotic behavior of the velocity varian
^v2(t)&S . Determining of that quantity can indicate wheth
the expected equilibrium state is reached and the equip
tion energy rule holds.

The Brownian particle velocity is to be determined fro
the stochastic integral~2! in which stepwise, constant value
of F(t), Fk follow from the length of subsequent time inte
vals sk :

v~ t !5m21F (
k51

n

FkE
tk21

tk
R~ t2t!dt1Fn11E

tn

t

R~ t2t!dtG ,

~25!

wheretk2tk215sk andt050. Sampling of intervalssk con-
tinues as long as the timet is reached:(1

nsk,t and(1
n11sk

>t, wheren is an arbitrary integer. The interval length di
tribution P(s) is a natural quantity of interest. The lastn
11 interval corresponds to the timet @38#. It is clear that the
distribution of lengths of that interval, the ‘‘effective’’ inter
val distribution P̂(s,t), cannot be identical withP(s); a
simple consideration reveals, e.g., the enhanced probab
of choosing longer intervals. Generally, that modified dis
bution can depend ont. One can express it in terms of th
cumulative distribution functionF(s,t) @37#:

P̂~s,t !5
]

]s
F~s,t !, ~26!

where
F~s,t !55 Et2s

t

S~x!dxE
t2x

s

P~j!dj for 0<s<t

E
0

t

S~x!dxE
t2x

s

P~j!dj1E
t

s

P~j!dj for s.t.

~27!
o-

:

s
n

The form of auxiliary functionS(x) follows from the nor-
malization condition

E
0

t

S~x!dxE
t2x

`

P~j!dj1E
t

`

P~j!dj51. ~28!

For the Kubo-Anderson process, the modification of
interval distributionP(s), exponential in that case, is of m
nor importance becausePKP(F) is independent ofP(s) and
the interval lengths do not influence process values. Co
quently, results of the simulations agree with general pre
tions implied by the FDT. Other forms of noise covarian
require taking into account the modified distributionP̂(s,t).
The case of stretched exponential covariance provide
e

e-
c-

a

simple but nontrivial example. It involves also the Poiss
nian distribution of jumping times.

A. Stretched exponential noise covariance

We assume the noise covariance in the following form

CF~ t !52mT/a2 exp~2aAt !. ~29!

Equations~2! and~25! express the solution of GLE in term
of the resolventR(t). The Laplace transform of that functio
R̃(s), is given by Eq.~3! and the kernel has the form
2-4
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K̃~s!5
a2

2 S 1

s
2

Apa

2sAs
exp~a2/~4s!!F12erfS a

2As
D G D ,

~30!

where erf(x) denotes the error function. To obtain the res
of

e

he

e
e
-

is
s

l
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ventR(t) we need to evaluate the inverse Laplace transfo

from R̃(s): R(t)5(1/2p i )*2 i`1s
1 i`1sR̃(z)etzdz. The integrand

possesses two conjugate simple poles and a cut along
negative real axis. Evaluation of the contour integral p
duces the following result:
R~ t !5e2at~c1sinbt1c2cosbt!2
4

Ap
E

0

` x2 exp@x22a2t/~4x2!#dx

@$2x21a2/~4x2!%exp~x2!22Apx3 erfi~x!#214px6
; ~31!
mes
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the imaginary error function erfi (x)[2 i erf (ix) can eas-
ily be calculated by the following expansion:

erfi~x!5
2

Ap
(
n50

`
x2n11

n! ~2n11!
.

The constantsa andb denote the real and imaginary parts
the pole ofR̃(z), respectively:z052a2ubu i ; they have to
be evaluated numerically.c1 and c2 can be found by the
standard residues analysis. Fora51 the constants are th
following: a50.207 094, b50.440 963, c1520.127 752,
and c250.593 952. Figure 1 presents the functionR(t) for
a51 anda52.

We wish to perform the Monte Carlo simulation using t
noise defined by the process~14!. According to Eq.~17!, the
interval distribution is exponential:P(s)5b exp(2bs),
where b5a2/4. We expect that taking into account of th
modified form of the distribution may be important for th
simulation results becausem ands are connected. That dis
tribution can easily be found in this case. From Eq.~28!, we
obtainS(x)5b; finally we get

P̂~s,t !5H b2s exp~2bs! for 0<s<t

b~11bt !exp~2bs! for s.t.
~32!

The function~32! is presented in Fig. 2. The distribution
discontinued. It depends ont but this dependence dwindle
exponentially with time; the left-hand branch (s<t) is time

FIG. 1. The resolventR(t) ~31! for the stretched exponentia
shape of noise covariance as a function of time.
independent. Therefore, asymptotically the process beco

stationary. Nevertheless,P̂(s,t) possesses a mean valu
twice that forP(s) @39# and simulation results must reflec
that. Indeed, the velocity variance obtained from the E
~25!, shown in Fig. 3, stabilizes at a lower value then th
predicted by the equipartition energy rule (T/m). It is so
because long intervals correspond to small values of
noise amplitude, according to the Eq.~16!. For short times,
in turn, the result of the simulation agrees with the gene
prediction~4!, also shown in Fig. 3, because then the bran
s.t dominates the distribution~32! and the dependence ont
is weak.

It is possible to construct some KP that does not cha
when inserted into the GLE and that produces the equi
rium state in agreement with the FDT. For that purpose
single out some subset of kangaroo processes, arestricted
KP ~RKP!, defined in the following way. We choose subs
quent intervalssk in the stepwise evolution of KP, accordin
to the distributionP(s), and assume thatt corresponds to the
n11 interval, i.e., Sn[s11s21•••1sn,t and Sn11.t.
Let St[Sn112t.0. We call some KP ‘‘restricted’’ ifSt

<d for a givend; n is an arbitrary integer:nP(0,̀ ). The
probability distribution of the last interval lengths we deno

by P!(s,t;d). Obviously,P!(s,t;`)5 P̂(s,t). On the other
hand, in the limitd→0 the last interval lengths obey th

FIG. 2. The time evolution of the effective interval distributio

P̂(s,t) ~32! corresponding to the exponential form of the origin
distributionP(s) with b51.
2-5
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T. SROKOWSKI PHYSICAL REVIEW E 64 031102
original, time-independent distributionP(s) but only for
s<t because longer intervals are excluded by construct
Therefore, the distributionP(s) can be recovered at larg
times if those intervals are negligible. We get then the f
lowing theorem: If the probability that intervals in a s
quencesk are larger thant asymptotically vanishes, then

lim
t→`

lim
d→0

P!~s,t;d!5P~s!. ~33!

For the distribution~32!, the required probability vanishe
with time and the theorem can be applied. In practice it c
be done easily by choosing some smalld and sampling in-
tervals from the distributionP(s), in the same way as before
as long as the timet is reached. Then all sequences of int
vals for whichSt.d are rejected. Figure 3 presents the res
of such calculations ford50.01. At short times, the velocity
variance differs substantially from the other results shown
the figure because the branchs.t is then essential, but as
ymptotically it approaches the valueT/m, in accordance with
the equipartition energy rule.

B. Algebraic noise covariance

Finally, we consider a power-law form of the covarian

CF~ t !;t2g ~0,g,3!. ~34!

The KP we apply to model the noise is defined by Eq.~20!;
we implement the simplest casea50. Then the amplitude
distribution is a constant~except very largeuFu): PKP(F)
5Ageg/3/2 wheree is the smallest interval length. The in
terval distribution follows from Eq.~22!:

P~s!5
g

3
eg/3s212g/3u~s2e!. ~35!

The resolventR(t) for the noise with covariance~34! can
be evaluated by means of similar methods as for
stretched exponential covariance. Results can be foun

FIG. 3. The velocity variance obtained from the Monte Ca
simulation of GLE solutions~25! for stretched exponential form o
noise covariance. The noise has been modeled by the KP~solid line!
and the RKP withd50.01, using theorem~33! ~dashed line!. 1000
trajectories have been calculated for either case. The variance
culated from Eq.~4! is also presented~dots!. The temperature
T51, the particle massm51, and the parametera51.
03110
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Ref. @40# for g53/2 and in Refs.@37,41# for g51. Now we
want to calculate the modified distributionP̂(s,t). First, we
have to solve Eq.~28!, which assumes the form of Abel’
integral equation

E
0

t

S~x!~ t2x!2g/3dx1t2g/35e2g/3. ~36!

The solution reads

S~x!5
e2g/3

G~12g/3!G~g/3!
xg/3212d~x!. ~37!

After evaluation of integrals, we obtain from Eqs.~26! and
~27! the expression for the required distribution:

P̂~s,t !

5H s2g/321

G~12g/3!G~g/3!
@ tg/32~ t2s!g/3# for e<s<t

F tg/3

G~12g/3!G~g/3!
1

geg/3

3 Gs2g/321 for s.t.

~38!

The distributionP̂(s,t) for g51 is presented in Fig. 4. The
picture is markedly different from that obtained for the e
ponential case~Fig. 2!; the right branch, corresponding to th
intervalss.t, does not vanish with time but gets larger wh
comparing to the left branch. The entire distribution shi
with time towards large intervals because the average in
val length is infinite.

Therefore, the effective distributionP̂(s,t) differs sub-
stantially from theP(s), and the stochastic process genera
by it must possess different properties. First, let us reca
late the covariance that, in general, can depend on an in
time t0 : Ĉ(t,t0)5^F(t0)F(t01t)&S , where the processF(t)
is to be determined by the simulation. Technically, th
means that for a givent0, one produces a sequence of inte
vals to reach the timet01t. Then one evaluates correspon
ing values of the processF(t) using Eq.~21!. Then the pro-

al-

FIG. 4. The time evolution of the effective interval distributio

P̂(s,t) ~38! corresponding to the original distributionP(s) in the
form ~35! with g51. The minimal interval lengthe50.01.
2-6
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cess is governed by the distributionP̂(s,t). The expression
for the covariance follows from the Eq.~7!:

Ĉ~ t,t0!5E
e

`

s22g/3 exp~2t/s!P̂~s,t0!ds. ~39!

Evaluation of the integral gives the following result:

Ĉ~ t,t0!5
3e2g/3g21/3

G~12g/3!G~g/3!
@ t0

g/3t2gḡ~g,t/e!

2t0
1/22g/6t (212g)/2 exp~2t/2t0!

3G~11g/3!Wg/621/2,2g/2~ t/t0!#, ~40!

where ḡ(a,x) denotes the incomplete gamma function a
Wa,b(x) stands for the Whittaker function@42#. Certainly,
the above result is different from our starting covarian
~34!; the most striking feature of the functionĈ(t,t0) is the
dependence ont0 that does not diminish witht. The variance
of the process,ŝ2(t0), can be found by insertingt50 into
the Eq.~40!. Let us consider two examples. The caseg51
has been discussed in Ref.@37#; the final expression for the
variance is the following:

ŝ2~ t0!5
e21/3

G~1/3!G~2/3!
@3 ln 3/21pA3/61 ln~ t0 /e!#t0

22/3

~ t0@e!. ~41!

Algebraically correlated stochastic processes forg53/2 are
especially important. They have been extensively studie
connection with the Brownian motion in a viscous flu
@43,4–6,40#. In this case, the variance of the process rea

ŝ2~ t0!5~ 2
3 !1/3S 2

pe
t0

21/21t0
23/2D . ~42!

Therefore, in contrast to the original variance@calculated
with the distributionP(s)# s25g21e2g, the effective vari-
anceŝ2 is time dependent and tends to zero. That behavio
a direct consequence of nonstationarity, i.e., of the time
pendence of the distributionP̂(s,t). The decline ofŝ2(t0)
means that the effective temperature of the system drop
zero when we insert the process into the stochastic inte
~25! as a model of the noise. Consequently, the Brown
particle velocity variance also must dwindle with time. I
deed, a direct Monte Carlo simulation confirms this conc
sion, as it has been demonstrated in Ref.@37# for g51.

The RKP can be constructed also for algebraic corre
tions. However, the theorem~33! cannot be applied becaus
of the strong time dependence of the distributionP̂(s,t). The
probability that the interval length is larger thent does not
decline with time: P̂(s.t,t)5* t

`P̂(s,t)ds53/ @gG(1
2g/3)G(g/3)#5const.
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IV. SUMMARY AND DISCUSSION

The kangaroo processes represent a broad class of ran
functions characterized by various forms of the covarian
Therefore, they provide an opportunity to model physic
stochastic processes possessing an arbitrary covariance
in addition, a quite general amplitude distribution. The KP
stepwise–the value of the process changes according to s
jumping frequency that, in turn, depends on that value. So
physical phenomena exhibit a similar, stepwise behavior
the KP is a natural process to model them. An import
quantity is the distribution of intervals of constant proce
valueP(s), uniquely connected to the amplitude distributio
In this paper, we have discussed two forms of that distri
tion: the exponential and the algebraic ones. We have d
onstrated how one can generate algebraically correlated
cesses using the KP with some algebraicP(s). The
exponential form, in turn, is suitable to represent both ex
nential and stretched exponential correlations.

The GLE has been solved using KP as a model of
noise. The problem has been considered as a juxtapositio
two random processes: of velocity of the Brownian partic
described by the GLE, and of the adjoined KP. In the fram
work of that approach, the forceF(t) in the stochastic inte-
gral ~2! is determined by looking for a value of the KP
independentlyevolved, at a given time. Such procedu
changes probability distributions of the KP and Monte Ca
simulated solutions of the GLE are not in agreement w
results predicted by general analysis, founded on the F
Results obtained from effective probability distribution
among which the interval distributionP̂(s,t) is the most im-
portant, does not correspond to the equilibrium state con
tent with the equipartition energy rule. For algebraically c
related processes, even nonstationarity effects emerge.
those results involving effective distributions a necess
consequence of modeling of the noise by means of adjoi
random process in the form of KP? If the stochastic force
want to insert into the stochastic integral~2! represents some
independent physical process, the modified probability dis
bution ~26! has to be taken into account. In such cases,
must expect an apparent violation of the FDT, despite pro
definition of the kernel. Reversely, any information abo
properties of the noise, extracted from GLE solutions,
ways refers to the effective appearance of that process in
GLE.

On the other hand, for some cases, there is a possibilit
constructing the model in such a way as to avoid any mo
fication of the distributions and to preserve consistency w
the FDT. For that purpose, one can use some specific ver
of the ordinary KP—the RKP. The idea is very simple:
some interval in the stepwise evolution of the KP ends
actly at a point corresponding to the required time, noth
has to be modified. We can imagine the KP as a ‘‘clock’’ wi
a variable frequency given by the distributionP(s). In that
picture, the application of the RKP withd50 means a syn-
chronization of that clock in respect to the physical time
the GLE. An important limitation of the synchronization pro
cedure consists in the fact that interval lengths of the R
are always finite, not longer than timet, and P(s) usually
2-7
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possesses infinite tails. If, however, those tails decline su
ciently fast, intervals longer thent become negligible. It has
been demonstrated that the exponential interval distribu
possesses this property and a Monte Carlo algorithm ut
ing the RKP can easily be constructed—simulation res
indeed correspond to the equilibrium state predicted by
FDT. The KP in this form is especially suitable for physic
applications. We note, however, that the RKP withd50 is
not completely independent of the GLE: the synchronizat
introduces a coupling. The case of stretched exponentia
variance is only the simplest nontrivial example of applic
tion of KP with the Poissonian interval lengths distributio
A straightforward generalization, allowing for the oth
power-law dependencesm(s), produces KP’s with covari-
ances given by the Bessel functions Kn(At).

One cannot expect that every shape of the covaria
function may be modeled by some sufficiently steep form
P(s) and, therefore, the RKP is always a proper tool. P
cesses possessing covariances with long tails are chara
ized by long intervals~long free paths!. Indeed, in Sec. II, we
have indicated a strong limitation of admissible shapes
P(s). The algebraic tails ofP(s) are essential and very lon
intervals given by the effective distributionP̂(s,t) are not
s

ns
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negligible for long times; the distribution itself remains tim
dependent. For that reason, the RKP that consist in a cu
of long intervals cannot work as a model of algebraic co
riances. In the other words, due to divergence of moment

both distributions,P(s) and P̂(s,t), the branch correspond
ing to the intervalss.t is important for larget and the syn-
chronization cannot be achieved.

The necessity of taking into account the modified form
probability distributions is not restricted to the GLE but r
lates to any stochastic equation, e.g., the ordinary Lange
equation, if the random force is modeled by the adjoined
Monte Carlo simulations can be useful for some general
tions of the diffusion equation, in particular for the Burge
equation@44#. Nonlinear equations, possessing a broad sp
trum of applications in the fluid dynamics, are characteriz
by long-range noise correlations both in space and t
@45,1#. Also, noise can possibly be modeled by the KP.
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